top of page
silitecco1986

Particle Designer 2.7 Crack FREE Download: How to Install and Use



LiNi1/3Mn1/3Co1/3O2-layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers advantages for high energy density and alleviation of cathode side reactions/corrosions, but introduces drawbacks such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in a commercial LiNi1/3Mn1/3Co1/3O2 cathode by using advanced scanning transmission electron microscopy. We find the formation of the intragranular cracks is directly associated with high-voltage cycling, an electrochemically driven and diffusion-controlled process. The intragranular cracks are noticed to be characteristically initiated from the grain interior, a consequence of a dislocation-based crack incubation mechanism. This observation is in sharp contrast with general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surfaces. Our study emphasizes that maintaining structural stability is the key step towards high-voltage operation of layered-cathode materials.




Particle Designer 2.7 Crack FREE Download



Exploring lithium-ion battery (LIB) electrode degradation mechanisms has long been an active research topic for the battery community1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. Understanding the origin of degradation allows us to design better electrode materials. In the case of layered transition metal (TM) oxide cathode degradation, three mechanisms have been identified2,3,4,5,12,17,18: (1) Layer to spinel/rock salt phase transformation, which is characteristically initiated from the individual particle surface and gradually propagated inwards with battery cycling. (2) Side reactions between the cathode and electrolyte, leading to electrolyte decomposition and passivation of the solid electrode. (3) Corrosion and dissolution of the cathode materials in the electrolyte. These findings lead to the application of coating techniques and other surface treatments to stabilize vulnerable surfaces on the cathode materials. Such coating and surface treatments have been frequently verified as effective methods for improving cathode cycling stability19,20,21,22,23,24,25,26,27,28. Besides chemical instability, another degradation mechanism is associated with the volume change of the material upon lithium (Li) ion extraction and reinsertion. Non-uniform accommodation of such a volume change will generate stress, which can lead to mechanical failure29. In fact, intergranular crack formation is one of the most well-known material degradation mechanisms29,30,31,32,33,34,35.


To increase the volumetric energy density of the electrode, the packing density of the active electrode component should be increased. One way to accomplish this in commercial LIB cathodes is to use primary particles to form densely packed secondary particles. However, such secondary particles always generate intergranular cracks during battery charge/discharge cycling, due to the anisotropic expansion and shrinkage of each primary particle31,32,39. Such strain-induced cracking has been considered to be one of the major degradation mechanisms for the cathode for the following reasons: (1) Cracks can result in poor grain-to-grain connections, leading to poor electrical conductivity and even loss of active materials due to fragmentation; (2) Cracks create fresh surfaces that will be exposed to electrolytes and generate new sites for surface phase transformation, corrosion and side reactions, consequently accelerating cell degradation.


Two types of intragranular cracks can be uniquely identified. One type possesses the classical term of crack, which is featured by two free surfaces as indicated by the yellow arrows in the STEM high-angle annular dark-field (HAADF) images of Fig. 2c, d. The two free surfaces appear to be parallel along the whole crack except at the very tip, which is markedly different from a wedge-shaped crack formed by fast extension of crack under stress. Furthermore, cracks are predominantly parallel to (003) planes in the layer structure. These morphological features of the cracks are associated with their formation process, which will be discussed in detail in the subsequent sections.


It should be noted that, not always, but for some cases, the dark contrasted strip is spatially connected to the real crack as representatively shown in Fig. 2d. This observation likely indicates that the dark contrasted strip is a premature crack. The reason we term the dark contrasted strip as a premature crack is because it does not have two free surfaces. With the continued cycling of the battery, the premature crack will further develop into a real crack.


Another significant feature of the intragranular cracking is that a large fraction of the intragranular cracks terminate within the grain interior, as representatively shown in Fig. 4, for which the red arrows highlight the intragranular end-to-end cracks that were fully terminated within the grain interior. These observations indicate that the intragranular cracks are initiated from the grain interior, which is in contrast with cracking models that predict the surface or grain boundary should be the preferred crack initiation site42,44,45,46. However, based on thermal analogy analysis, Kalnaus et al.48 predicted cracking may initiate from the centre of the particle. Operando X-ray diffraction measurement has indicated the inhomogeneous lithiation/delithiation within a single cathode crystal49. Therefore, the variation of the c plane spacing at different delithiation states within a single grain can lead to a complex strain pattern within the grain interior. Figure 4e gives a general illustration on the intragranular crack formation process under tensile stress. Inhomogenous Li distribution is believed to be the direct cause of such tensile stress. This internal cracking model also matches our proposed Mode I crack mechanism based on the observations on the crack tips in Fig. 3.


The present observation has relevant implications for electrode design and battery operation. Although many surface coating methods have been used to minimize the surface-initiated structure degradation and cation dissolution in layer-structured cathode materials, these methods cannot be used to prevent the intrinsic, intragranular cracks that were initiated inside the primary particles and aggravated by the high-voltage charge process. During the Li-ion extraction and insertion processes, the lattice of crystal will be subject to change (either expansion or contraction). Although these changes are reversible within the certain limit, too large a lattice change, such as those induced by a high-voltage charge process, will lead to the irreversible formation of the dislocations and cracks, which will in turn be detrimental for the performance of the battery, as what has been observed in the present case. Therefore, on one hand, for the currently available NMC materials, the charge voltage has to be well controlled to minimize the electrochemically induced intragranular cracks. On the other hand, in order to push the NMC-layer-based materials for high-voltage applications, efforts have to be made to adjust the chemistry and structure of the material such that it can alleviate the internal grain strain, cause minimal Li distribution inhomogeneity, and retain a stable lattice during charge and discharge cycling.


Blender is a free and open-source 3D computer graphics software tool set used for creating animated films, visual effects, art, 3D-printed models, motion graphics, interactive 3D applications, virtual reality, and, formerly, video games. Blender's features include 3D modelling, UV mapping, texturing, digital drawing, raster graphics editing, rigging and skinning, fluid and smoke simulation, particle simulation, soft body simulation, sculpting, animation, match moving, rendering, motion graphics, video editing, and compositing. 2ff7e9595c


0 views0 comments

Recent Posts

See All

Download tiktok jadi mp3

Como baixar vídeos do TikTok como arquivos MP3 TikTok é uma popular plataforma de mídia social que permite aos usuários criar e assistir...

Comments


bottom of page